Scheduling Service
Summary
Scheduling service supports the tasks that are generated periodically or repeatedly in the application server. It provides a function similar to UNIX Cron command.
The execution environment scheduling service is open source software and uses Quartz scheduler. This chapter explores the basic concept of the Quartz scheduler and then how to combine Spring that provides IoC service and Quartz scheduler.
Description
Quartz Scheduler
Scheduler, Job, JobDetail and Trigger are the major elements related with the execution of Quartz sheduler.

· Scheduler is a core object that manages the Quartz execution environment.

· Job is an interface that defines the tasks that the user carry out. It uses Trigger object for scheduling.

· JobDetail is an object that defines detail information for the job such as job name and job group.

· Trigger is an object that defines the execution schedule of a defined job. It informs Scheduler object of when to execute the job.

Quartz scheduler provide flexibility by separating between the Job that defines tasks and Trigger that defines the execution schedule. If Job and execution schedule are defined, you can modify the execution schedule only. Or you can define multiple schedules for a Job.

Example of Quartz Scheduler
Let’s explore a simple example to understand Quartz scheduler easier. The following example is quoted from Quartz manual, showing how to use Quartz and how to set a custom job.
Custom Job

The user can implement the org.quartz.Job inteferce to create a Job object and throw JobExecutionException exception if a serious error occurs. The Job interface defines execute().
 public class DumbJob implements Job {

 public void execute(JobExecutionContext context)

 throws JobExecutionException

 {

 System.out.println("DumbJob is executing.");

 }

 }

· DumbJob implements the execute() method of the Job interface.

· The execute() method outputs a message that the Job is implemented.
Quartz use code
 JobDetail jobDetail =

 new JobDetail("myJob",// Job name
 sched.DEFAULT_GROUP, // Job group name(if the value is 'null', it is defined as DEFAULT_GROUP)

 DumbJob.class); // Job class to be executed

 Trigger trigger = TriggerUtils.makeDailyTrigger(8, 30); // carry out at 08:30 everyday.
 trigger.setStartTime(new Date()); // Start instantly
 trigger.setName("myTrigger");

 sched.scheduleJob(jobDetail, trigger);

· First, define JobDetail class for Job setup.

· Use TriggerUtils to create Trigger that is executed carry out at 08:30 everyday.

· Finally, register JobDetail and Trigger in Scheduler.

Combination of Spring and Quartz

Spring provides the integrated class to support Scheduling. Spring 2.5 supports Timer that is included in JDK1.3 or higher and Quartz scheduler, an open source software. In this chapter, we will explore how to combine Quartz scheduler and Spring.
In order to combine with Quartz scheduler, Spring supports Quart Schedule, JobDetail, and Trigger that they can be set to beans in Spring context. The following explores how to create Quartz tasks, schedule tasks and start tasks.
Creation of Tasks
Spring provides the following two ways to create tasks.

· JobDetailBean is used to inherit QuartzJobBean and create job class

· MethodInvokingJobDetailFactoryBean is used to call the method of Bean object directly

Creation of Tasks by JobDetailBean

JobDetail is an object that contains information required to execute tasks. Spring provides JobDetailBean to create JobDetail bean. The following is an example.

JobDetailBean source code
package egovframework.rte.fdl.scheduling.sample;

public class SayHelloJob extends QuartzJobBean {

private String name;

public void setName (String name) {

this.name = name;

}

@Override

protected void executeInternal (JobExecutionContext ctx) throws JobExecutionException {

System.out.println("Hello, " + name);

}

}

· SayHelloJob class overrides executeInternal(..) function of QuartzJobBean to create tasks.

JobDetailBean configuration
 <bean id="jobDetailBean"

class="org.springframework.scheduling.quartz.JobDetailBean">

<property name="jobClass" value="egovframework.rte.fdl.scheduling.sample.SayHelloJob" />

<property name="jobDataAsMap">

<map>

<entry key="name" value="JobDetail"/>

</map>

</property>

 </bean>

· Use jobDataAsMap object deliver the property information required for Job setup to JobDetail object.

Creation of tasks by MethodInvokingJobDetailFactoryBean

Source code

package egovframework.rte.fdl.scheduling.sample;

public class SayHelloService {

private String name;

public void setName (String name) {

this.name = name;

}

public void sayHello () {

System.out.println("Hello, " + this.name);

}

}

· Define the bean class for task execution.
Configuration
<bean id="sayHelloService" class="egovframework.rte.fdl.scheduling.sample.SayHelloService">

<property name="name" value="FactoryBean"/>

</bean>

<bean id="jobDetailFactoryBean"

class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean">

<property name="targetObject" ref="sayHelloService" />

<property name="targetMethod" value="sayHello" />

<property name="concurrent" value="false" />

</bean>

· In order to crate a task that calls the method of defined bean directly, define MethodInvokingJobDetailFactoryBean.

Task scheduling
The most used Trigger types in Spring are SimpleTriggerBean and CronTriggerBean. SimpleTrigger is used for simple scheduling such as certain time, frequency of repetition and waiting time. CronTrigger is similar to Cron command of UNIX and used for complicated scheduling. CronTrigger can set Job so that it can be executed at a certain time in a certain day and month liking using the calendar. The following shows how to use SimpleTriggerBean and CronTriggerBean to schedule the previously created tasks.
Configuration using SimpleTriggerBean

<bean id="simpleTrigger" class="org.springframework.scheduling.quartz.SimpleTriggerBean">

<property name="jobDetail" ref="jobDetailBean" />

 <!—Start instantly -->

<property name="startDelay" value="0" />

<!—Execute every 10 seconds -->

<property name="repeatInterval" value="10000" />

</bean>

· Register the task previously created by JobDetailBean in Trigger for schedule. SimpleTriggerBean is set so that it will start instantly and execute every 10 seconds.
Configuration using CronTriggerBean

<bean id="cronTrigger" class="org.springframework.scheduling.quartz.CronTriggerBean">

<property name="jobDetail" ref="jobDetailFactoryBean" />

<!-- Execute every 10 seconds -->

<property name="cronExpression" value="*/10 * * * * ?" />

</bean>

· Register the task created by using MethodInvokingJobDetailFactoryBean in the trigger for scheduling. CronTriggerBean is set to be executed every 10 seconds. For detail on Cron expression, refer to Quartz Cron expression.

Starting the task
To start the scheduled task, Spring provides SchedulerFactoryBean.

Configuration

<bean id="scheduler" class="org.springframework.scheduling.quartz.SchedulerFactoryBean">

<property name="triggers">

<list>

<ref bean="simpleTrigger" />

<ref bean="cronTrigger" />

</list>

</property>

</bean>

· Use SchedulerFactoryBean to start their SimpleTriggerBean- and CronTriggerBean-based Trigger tasks.

References
· Quartz Manual
· Spring Scheduling Manual
· Quartz API
· Spring API
· Quartz Cron Expression
