Summary
A Maven repository is storage of artifacts composed of local and remote repositories. It calls in and uses the dependencies declared in the project’s pom.xml.

Description

When Maven is installed, a repository to store and manage Maven artifacts is automatically installed in the local place.

The default directory is C:\Documents and Settings\Administrator\.m2\repository.

Maven remote repository

Maven provides central repository and enterprises and organizations provide remote repositories.
Developers can download artifacts required by outside repository by setting up the environment.

Repository diagram

Local repository: Caches artifacts in the local file system. Downloads artifacts from the remote repository and store and manage them.

Remote repository: Mainly HTTP server. Provides almost all artifacts except 3rd party artifacts.

Environmental settings
You can change the location of the local repository and set up the remote repository in settings.xml, Maven’s environment setup file.

Change the location of the local repository

<settings>

<!-- localRepository

| The path to the local repository maven will use to store artifacts.

|

| Default: ~/.m2/repository-->

<localRepository>C:/java/.m2/repository</localRepository>

</settings>

Nexus interworking setting

NEXUS based Maven Repository management

Manual
Maven Repository call process

The common used library management mechanism is to contain the required libraries in a directory in the project and use them by setting the path, but Maven uses the dependency setup mechanism (libraries are declared in the setup file).

.

1. Declares libraries in the project’s pom.xml
2. Searches the developer’s local repository for the declared libraries.

1. If they exist, the libraries are cached into the project
2. If they don’t, a request is made to the remote repository.

3. Searches the remote repository for the declared libraries.

1. The local repository downloads and store the searched artifacts from the remote repository.[image: image1.jpg][FCREEE] AN =D mEEE)

o
0=-0 8 Pmfpwm

5440 [Coomamons and Sotinge it gt rs s roc s 2.

el * o=~ 21
<SRN G oasymock 24 e
= G eV Eaw ! Goasmocztarstat B

St Lo | Bt o a8
. Decumens and i easymack- pom shal i
= 0 Admissar
& e s
% @ a2
= & s
S e
Sim
=5 roostony
S saotanvark
=y
= Qi
3 logh
0 @ msal
.3 oo
=1
& o i
0 woche
& woiel
8 seaymeck
2 5 emsmect
=]
we

= sorvaemesok ¥

Exscutia Jar Flo
S T2
PoM 2
S W

szt
A3 o
S R

[image: image2.jpg]

[image: image3.jpg]S Datese.
e
23en
E=
BT
S5
SEwenme
=an
Hmeoimeson
ineroihe 0085
e gpesosrsnat
Humerssmesosen
[Er—
[—

[image: image4.jpg]

Structure of a local repository directory
The directory structure for storing artifacts

: groupId / artifact name / version / artifact name-version.jar & artifact name-version.pom

예) groupId: org.easymock

artifactId: easymock

version: 2.4

- Storing location: org/easymock/easymock/2.4/easymock-2.4.jar & easymock-2.4.pom

Add artifacts to the local repository
Add 3rd party Tibero jdbc artifact to the local repository
The 3rd party libraries are the libraries downloaded from enterprises and organizations.

Check the name and version of the downloaded libraries.

In order to register the downloaded libraries as Mavens artifacts, observe the following three requirements. – refer to Maven Dependency Management
groupId

A download library does not have groupId information. Provide it with groupId.

Example) com.tmax.tibero

artifactId

For artifactId, use the name of the downloaded library.

Example) tibero-jdbc

version

Check the version of the downloaded library.

Example) 3.0

1. Create a folder in Maven repository based on the structure described in the local repository directory structure.

Directory structure: com/tmax/tibero/tibero-jdbc/3.0. Put downloaded libraries and the pom file that contains project information in this directory.

Example) In general, artifactId is cmposed of library name and version and the pom file has a name in a format of artifactId.pom.

Therfore, tibero jdbc’s artifactId becomes tibero-jdbc-3.0.jar and the pom file name becomes tibero-jdbc-3.0.pom..

2. Prepare artifactId.pom
The pom file should contain the above mentioned groupId, artifactId and version information. tibero-jdbc-3.0.pom

<project>

<modelVersion>4.0.0</modelVersion>

<groupId>com.tmax.tibero</groupId>

<artifactId>tibero-jdbc</artifactId>

<version>3.0</version>

<description>POM was created by Sonatype Nexus</description>

</project>

✔The name rule to add artifacts should be handled with importance. Any error in the naming rule may cause dependency dismissing error in storing and using artrifacts.

References

Maven Central Repository [http://mvnrepository.com/]
Basic diagram�
Diagram interworked with repository management tool (Nexus)�
�
�
�
�

�

�

�

�

